Abstract
Water scarcity and droughts are an increasing issue in many parts of the world. In the context of urban water systems, the transition to circularity may imply wastewater treatment and reuse. Planning and assessment of water reuse projects require decision-makers evaluating the cost and benefits of alternative scenarios. Manual or semi-automatic approaches are still common practice for planning both drinking and reclaimed water distribution networks. This work illustrates a decision support tool that, based on open data sources and graph theory coupled to greedy optimization algorithms, is able to automatically compute the optimal reclaimed water network for a given scenario. The tool provides not only the maximum amount of served reclaimed water per unit of invested cost, but also the length and diameters of the pipes required, the location and size of storage tanks, the population served, and the construction costs, i.e., everything under the same architecture. The usefulness of the tool is illustrated in two different but complementary cities in terms of size, density, and topography. The construction cost of the optimal water reclaimed network for a city of approximately 100,000 inhabitants is estimated to be in the range of €0.17–0.22/m3 (for a payback period of 30 years).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.