Abstract
Increased penetration of inverter-connected renewable energy sources (RES) in the power system has resulted in a decrease in available rotational inertia which serves as an immediate response to frequency deviation due to disturbances. The concept of virtual inertia has been proposed to combat this decrease by enabling the inverters to produce active power in response to a frequency deviation like a synchronous generator. In this paper, we present an algorithm to optimally design the inertia and damping coefficient required for an inverter-based virtual synchronous machine (VSM) to participate efficiently in the inertia response portion of primary frequency control. We design the objective function to explicitly trade-off between competing objectives such as the damping rate the the frequency nadir. Specifically, we formulate the design problem as a constrained and regularized H2 norm minimization problem, and develop an efficient gradient algorithm for this non-convex problem. This proposed algorithm is applied to a test case to demonstrate its performance against existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.