Abstract

This paper introduces a methodology for the optimal design of passive Tuned Mass Dampers (TMDs) to control the dynamic response of buildings subjected to earthquake loads. The selection process of the optimal design parameters is carried out through a metaheuristic approach based on differential evolution (DE) which is a fast, efficient, and precise technique that does not require high computational efforts. The algorithm is aimed to reduce the maximum horizontal peak displacement of the structure and the root mean square (RMS) response of displacements as well. Furthermore, four more objective functions derived from multiple weighted linear combinations of the two previously mentioned parameters are also studied to obtain the most efficient TMD design configuration. A parallel process based on an exhaustive search (ES) with precision to 2 decimal positions is used to validate the optimization methodology based on DE. The proposed methodology is then applied to a 32-story case-study derived from an actual building structure and subjected to different ground acceleration registers. The best dynamic performance of the building is observed when the greatest weight is given to the RMS response of displacement in the optimization process. Finally, the numerical results reveal that the proposed methodology based on DE is effective in finding the optimal TMD design configuration by reducing the maximum floor displacement up to 4% and RMS values of displacement of up to 52% in the case-study building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call