Abstract
Placing an inspection buffer immediately after an unreliable process subject to failure protects the process customers from receiving non-conforming products. Such protection is achieved by screening the buffer contents whenever a shift in the process is detected. Previous studies have suggested that, if properly designed, such buffers can reduce overall costs. In this paper we make two types of contributions to the study of inspection buffers. First, we refine the model proposed by Klastorin et al. (1993), by incorporating a more efficient way of sampling, a more realistic objective function and more accurate cost expressions. Second, we provide analytical results to assist in the calculation of the economically optimal buffer size. Specifically, these include conditions for determining whether an inspection buffer is at all justified and a theorem for bounding the search for the optimal buffer size. The performance of the search bound and the sensitivity of the model are examined computationally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.