Abstract

ABSTRACTThe adaptive exponentially weighted moving average (AEWMA) control chart is a smooth combination of the Shewhart and exponentially weighted moving average (EWMA) control charts. This chart was proposed by Cappizzi and Masarotto (2003) to achieve a reasonable performance for both small and large shifts. Cappizzi and Masarotto (2003) used a pair of shifts in designing their control chart. In this study, however, the process mean shift is considered as a random variable with a certain probability distribution and the AEWMA control chart is optimized for a wide range of mean shifts according to that probability distribution and not just for a pair of shifts. Using the Markov chain technique, the results show that the new optimization design can improve the performance of the AEWMA control chart from an overall point of view relative to the various designs presented by Cappizzi and Masarotto (2003). Optimal design parameters that achieve the desired in-control average run length (ARL) are computed in several cases and formulas used to find approximately their values are given. Using these formulas, the practitioner can compute the optimal design parameters corresponding to any desired in-control ARL without the need to apply the optimization procedure. The results obtained by these formulas are very promising and would particularly facilitate the design of the AEWMA control chart for any in-control ARL value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.