Abstract
Switched Ethernet networks rely on the Spanning Tree Protocol (STP) to ensure a cycle-free connectivity between nodes, by reducing the topology of the network to a spanning tree. The Multiple Spanning Tree Protocol (MSTP) allows for the providers to partition the traffic in the network and assign it to different virtual local area networks, each satisfying the STP. In this manner, it is possible to make a more efficient use of the physical resources in the network. In this paper, we consider the traffic engineering problem of finding optimal designs of switched Ethernet networks implementing the MSTP, such that the worst-case link utilization is minimized. We show that this problem is NP-hard. We propose three mixed-integer linear programming formulations for this problem. Through a large set of computational experiments, we compare the performance of these formulations. Until now, the problem was almost exclusively solved with heuristics. Our objective here is providing a first comparison of different models that can be used in exact methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.