Abstract
This paper develops a robust and practical design for supersonic nozzles to be used in an altitude engine test facility. Although many studies have been conducted on nozzle design, none of these present a robust yet practical and simple method for designing supersonic nozzles. This research attempts to develop such design for supersonic nozzles by combining method of characteristics (MOC), optimization algorithm, and computational fluid dynamics analysis for design verification. Preliminary design optimal techniques were adopted to reduce nozzle length while keeping the exit area constant in the design. Optimization produced a smooth flow by generating a parallel and uniform flow at the exit. A two-dimensional model was initially used because of the axisymmetrical characteristic of the flow in this study. The optimal nozzle was designed for the operation of a test facility at Mach number 2.3 and altitude of 7 km. The optimal design produced a uniform and parallel flow at the given test condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.