Abstract
Abstract The problem of minimizing the cost of a structural control system subject to displacement, stress and side constraints is stated in a linear programming (LP) form. The control variables are either control forces or control displacements and the objective function represents the magnitude and the number of variables. It is shown that equivalent stress distributions can be achieved by various control systems. The displacements, on the other hand, depend on the location of the control variables. Some relationships between control forces, control displacements, stiffness and flexibility method formulations are derived. The LP formulation provides effective solutions of the presented problem. An alternative solution procedure is proposed for problems where the main object is to minimize the number of control variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.