Abstract
The total focusing method (TFM) is often considered to be the 'gold standard' for ultrasonic imaging in the field of nondestructive testing. The use of matrix phased arrays as probes allows for high-resolution volumetric TFM imaging. Conventional TFM imaging involves the use of full matrix capture (FMC) for ultrasonic signals acquisition, but in the case of a matrix phased array, this approach is associated with a huge volume of data to be acquired and processed. This severely limits the frame rate of volumetric imaging with 2D probes and necessitates the use of high-end equipment. Thus, the aim of this research was to develop a novel design method for determining the optimal sparse 2D probe configuration for specific conditions of ultrasonic imaging. The developed approach is based on simulated annealing and involves implementing the solution of the sparse matrix phased array layout optimization problem. In order to implement simulated annealing for the aforementioned task, its parameters were set, the acceptance function was introduced, and the approaches were proposed to compute beam directivity diagrams of sparse matrix phased arrays in TFM imaging. Experimental studies have shown that the proposed approach provides high-quality volumetric imaging with a decrease in data volume of up to 84% compared to that obtained using the FMC data acquisition method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.