Abstract
It is well known that solvents can have significant effects on rates and equilibrium compositions of chemical reactions. The computer‐aided molecular design (CAMD) of solvents for heterogeneous liquid phase reactions is challenging due to multiple solvent effects on reaction and phase equilibria. In this work, we propose a CAMD methodology based on a genetic algorithm (GA) for identifying optimal solvents for liquid phase reactions where the objective is to maximize the reaction equilibrium conversion. In particular, a novel molecular encoding method is introduced to facilitate the construction and evaluation of solvent molecules in a defined structure space. The reliability of the method for fast identification of optimal reaction solvents is demonstrated for a selected biphasic esterification reaction. The proposed approach opens up new perspectives for intensifying extractive reaction processes via the purposeful design of solvent molecules. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3238–3249, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.