Abstract

To solve structural optimization problems, it is necessary to integrate a structural analysis package and an optimization package. There have been many packages that can be employed to analyze reinforced concrete plane frames. However, because most structural analysis packages suffer from closeness of systems, it is very difficult to integrate them with optimization packages. To overcome the difficulty, we proposed a possible alternative, DAMDO, which integrates Design, Analysis, Modeling, Definition, and Optimization phases into an integration environment as follows. (1) Design: first generate many possible structural design alternatives. Each design alternative consists of many design variables X. (2) Analysis: employ the structural analysis software to analyze all structural design alternatives to obtain their internal forces and displacements. They are the response variables Y. (3) Modeling: employ artificial neural networks to build the models Y=f(X) to obtain the relationship functions between the design variables X and the response variables Y. (4) Definition: employ the design variables X and the response variables Y to define the objective function and constraint functions. (5) Optimization: employ the optimization software to solve the optimization problem consisting of the objective function and the constraint functions to produce the optimum design variables. The RC frame optimization problem was examined to evaluate the DAMDO approach, and the empirical results showed that it can be solved by the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call