Abstract

This paper presents a systematical optimal design method for powder aligning fixture during forming process and magnetizing fixture during magnetizing process for an anisotropic-bonded NdFeB magnet. Before the forming process, the mixture ratio of magnet powder and resin, molding tool temperature, and filling density are selected to improve the magnetic performance. During the forming process, a newly multiobjective optimization model is proposed to obtain the required orientation and maximum aligning field. Thus, in the magnetizing process, an anisotropic-bonded NdFeB magnet with required orientation and high residual magnetic flux density is obtained by applying a single-objective optimization process. To accurately predict the residual magnetic flux density, the transient finite element method combined with the Jiles-Atherton hysteresis model, taking the aligning field into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.