Abstract

This paper presents the design of high performance permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for the 3kW tactical quiet generator set. By introducing a proper quantity of permanent magnets into the synchronous reluctance generator rotor core an extended constant power-speed range at high efficiency and high power factor can be achieved. Different stator winding configurations i.e. distributed winding and concentrated winding of PMa-SynRG are compared using an analytical model based on lumped parameter model (LPM). For comparison, initially the distributed winding machine is optimized using differential evolution strategy (DES) and then the rotor structure of concentrated winding machine is optimized using the same stator. Finally, output performances are compared using finite element analysis. This design process is developed for optimized design of PMa-SynRG with minimum magnet volume, cogging torque and maximum efficiency and power factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.