Abstract

This study provides new insights into the comprehensive energy and economic performances of Photovoltaic Shading Systems (PVSS) in multi-story buildings. A numerical shading model was developed to evaluate the shading effect from an upper PVSS row on its subjacent row. Simulation models based on EnergyPlus were developed to analyze the Net Electricity Consumption (NEC) of PVSS with different tilt angles and widths in different climates. Benefit per Capacity (BC) and the Cost of Benefit (CB) indicators were used to analyze the economic performances of PVSS. Finally, the optimum PVSS tilt angles and widths in different cities were obtained. Harbin, Beijing, Changsha, Kunming, and Guangzhou, were selected as representative cities for different geographical and climatic conditions. The results indicate that the optimum tilt angles for PVSS installed in Harbin, Beijing, Changsha, Kunming and Guangzhou are 55°, 50°, 40°, 40° and 30°, respectively. Optimum PVSS width for all five cities is 1.156 m (7 columns of standard solar cells). PVSS installed, using the optimal design scheme, in multi-story buildings have better energy-saving potentials than either rooftop photovoltaic systems or traditional power supply modes for commercial buildings in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call