Abstract

Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.