Abstract

Robotic gas metal arc (GMA) welding is a manufacturing process which is used to produce high quality joints and has to a capability to be utilized in automation systems to enhance productivity. Despite its widespread use in the various manufacturing industries, the full automation of the robotic GMA welding has not yet been achieved partly because mathematical models for the process parameters for a given welding tasks are not fully understood and quantified. In this research, an attempt has been made to develop a neural network model to predict the weld bead width as a function of key process parameters in robotic GMA welding. The neural network model is developed using two different training algorithms; the error back-propagation algorithm and the Levenberg–Marquardt approximation algorithm. The accuracy of the neural network models developed in this study has been tested by comparing the simulated data obtained from the neural network model with that obtained from the actual robotic welding experiments. The result shows that the Levenberg–Marquardt approximation algorithm is the preferred method, as this algorithm reduces the root of the mean sum of squared (RMS) error to a significantly small value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.