Abstract

In structural size optimization usually a relatively small number of design variables is used. However, for large-scale space steel frames a large number of design variables should be utilized. This problem produces difficulty for the optimizer. In addition, the problems are highly non-linear and the structural analysis takes a lot of computational time. The idea of cascade optimization method which allows a single optimization problem to be tackled in a number of successive autonomous optimization stages, can be employed to overcome the difficulty. In each stage of cascade procedure, a design variable configuration is defined for the problem in a manner that at early stages, the optimizer deals with small number of design variables and at subsequent stages gradually faces with the main problem consisting of a large number of design variables. In order to investigate the efficiency of this method, in all stages of cascade procedure the utilized optimization algorithm is the enhanced colliding bodies optimization which is a powerful metaheuritic. Three large-scale space steel frames with 1860, 3590 and 3328 members are investigated for testing the algorithm. Numerical results show that the utilized method is an efficient tool for optimal design of large-scale space steel frames.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.