Abstract

We consider optimal design of infinite-dimensional Bayesian linear inverse problems governed by partial differential equations that contain secondary reducible model uncertainties, in addition to the uncertainty in the inversion parameters. By reducible uncertainties we refer to parametric uncertainties that can be reduced through parameter inference. We seek experimental designs that minimize the posterior uncertainty in the primary parameters while accounting for the uncertainty in secondary parameters. We accomplish this by deriving a marginalized A-optimality criterion and developing an efficient computational approach for its optimization. We illustrate our approach for estimating an uncertain time-dependent source in a contaminant transport model with an uncertain initial state as secondary uncertainty. Our results indicate that accounting for additional model uncertainty in the experimental design process is crucial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call