Abstract

The aim of this study is to address the suppression of limit cycle oscillations (LCOs) of a flapping airfoil using hysteretic nonlinear energy sink (HNES). A flexible flapping wing with span-wise bending and twisting degrees of freedom incorporated through translation and torsional springs with nonlinear stiffness in heave and pitch is considered in this study. HNES is comprised of a mass connected with primary structure by a purely hysteretic and a linear elastic spring connected in parallel. The nonlinear hysteresis behaviour is characterized by Bouc–Wen model. The performance of HNES with negative stiffness is investigated. Numerical results presented in this paper clearly elucidated the enhanced performance of the proposed HNES with negative stiffness compared with conventional NES and HNES with positive stiffness. An optimization is carried out to find the optimal design parameters of HNES in a deterministic approach by considering uncertainties in initial conditions with the objective of minimizing peak and root mean square response of LCOs. The theoretical study in this paper clearly demonstrated the concept and efficiency of the proposed passive control strategy which can be easily adopted for existing and up-coming wings.KeywordsPassive controlNonlinear energy sinkNegative stiffnessBouc–wen modelOptimization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.