Abstract

This paper introduces in detail the optimal design approach of high-order digital differentiator based on the algorithm of neural networks. The main idea is to minimize the sum of the square errors between the amplitude response of the ideal differentiator and that of the designed by training the weight vector of neural networks, then obtaining the impulse response of digital differentiator. The convergence theorem of the neural-network algorithm is presented and proved, and the optimal design approach is introduced by examples of high-order digital differentiator. The results show that the high-order digital differentiator designed by training the weights of neural networks has very high precision and very fast convergence speed, and initial weights are stochastic. Therefore, the presented optimum design method of high-order digital differentiator is significantly effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.