Abstract
The high-g micro-electro-mechanical systems (MEMS) piezoresistive accelerometers are designed based on silicon-on-insulator (SOI) to be used in explosion and penetration circumstance whose range is 2000,000 g. However, the classical Bernoulli–Euler theory is inadequate for the short and thick beams subject to high-frequency excitation, this paper presents theoretical model of the high-g accelerometer as a crossed clamped–clamped Timoshenko beams with a lumped moment of inertia at the free end which can optimize the two conflicting indicators eigenfrequency and sensitivity. In order to obtain the bigger sensitivity when the anti-overload is 200,000 g, considering the dynamic performances comprehensively, the dimensions of the accelerometer are determined. It can be found that the theoretical analyses are in good consistent with simulation results. The micro-machined accelerometers were tested by the Machete hammer and Hopkinson, the experimental calibration results show that the sensitivity of accelerometer has been improved to 0.4 μv/g. Consequently, the optimal design method proposed in this paper can improve the sensitivity under the anti-overload ability of 200,000 g.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.