Abstract
The development of an optimal low-calcium alkali-activated binder for high-temperature stability based on ferronickel slag, silica fume, potassium hydroxide, and potassium silicate was investigated based on Mixture Design of Experiment (Mixture DOE). Mass loss, shrinkage/expansion, and compressive and flexural strengths before and after exposure to a high thermal load (900 °C for two hours) were selected as performance markers. Chemical activator minimization was considered in the selection of the optimal mix to reduce CO2 emissions. Unheated 42-day compressive strength was found to be as high as 99.6 MPa whereas the 42-day residual compressive strength after exposure to the high temperature reached 35 MPa (results pertaining to different mixes). Similarly, the maximum unheated 42-day flexural strength achieved was 8.8 MPa, and the maximum residual flexural strength after extreme temperature exposure was 2.5 MPa. The binder showed comparable properties to other alkali-activated ones already studied and a superior thermal performance when compared to Ordinary Portland Cement. A quantitative X-ray diffraction analysis was performed on selected hardened mixes, and fayalite was found to be an important component in the optimal formulation. A life-cycle analysis was performed to study the CO2 savings, which corresponded to 55% for economic allocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.