Abstract

Biochemical mechanism studies often assume statistical models derived from Michaelis–Menten kinetics, which are used to approximate initial reaction rate data given the concentration level of a single substrate. In experiments dealing with industrial applications, however, there are typically a wide range of kinetic profiles where more than one factor is controlled. We focus on optimal design of such experiments requiring the use of multifactor hybrid nonlinear models, which presents a considerable computational challenge. We examine three different candidate models and search for tailor-made D- or weighted-A-optimal designs that can ensure the efficiency of nonlinear least squares estimation. We also study a compound design criterion for discriminating between two candidate models, which we recommend for design of advanced kinetic studies.Supplementary materials accompanying this paper appear on-line

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call