Abstract

In this work, we propose a superstructure optimization approach for the optimal design of an ethylene and propylene coproduction plant. We formulate a superstructure that embeds ethane and propane steam cracking technologies, propane dehydrogenation and olefin metathesis processes. We represent the superstructure with a Generalized Disjunctive Programming model, and solve the problem through a custom implementation of the Logic-based Outer Approximation algorithm in GAMS. We propose a state-equipment-network representation to model potential distillation trains, as well as alternative acetylene reactor configurations. Rigorous models are formulated for distillation columns, compressors, turboexpanders, vessels and several process equipment units. The objective function is to maximize the net present value. We analyze four international price scenarios for raw material and utility costs, while considering global ethylene and propylene prices. We obtain the optimal scheme for each case. Numerical results show that the combination of ethane steam cracking, olefin metathesis and ethylene dimerization is the most profitable configuration under low ethane price scenarios, whereas the combination of ethane and propane steam cracking together with propane dehydrogenation is the optimal solution when the propane price is on the order of ethane price.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.