Abstract
Dielectric elastomer actuators (DEAs) are widely used to drive soft machines, and optimal design is required in more advanced designs of soft robots. In this research article, a computational approach is originally proposed and validated for the topology optimization of electrodes of DEAs. The nonlinear finite elements of absolute nodal coordinate formulation are applied to model the dynamic electromechanical behaviors of DEAs. The parameterized level set method is employed to optimize the electrode topology of DEAs. Then, the method of system-wise equivalent static load is employed to convert the optimization problem of dynamic responses into the static one. Based on the sensitivity analysis, the normal velocity field for optimizing the electrode topology is derived. Finally, two case studies are presented to validate the proposed optimization approach. The experimental test is also performed, and the measured results are compared with the numerical ones to further validate the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.