Abstract

An effective seismic design entails many issues related to the capacity-based assessment of the non-linear structural response under strong earthquakes. While very powerful structural calculation programs are available to assist the designer in the code-based seismic analysis, an optimal choice of the design parameters leading to the best performance at the lowest cost is not always assured. The present paper proposes a procedure to cost-effectively design earthquake-resistant buildings, which is based on the inversion of an artificial neural network and on an optimization algorithm for the minimum total cost under building code constraints. An exemplificative application of the method to a reinforced-concrete multi-story building, with seismic demands corresponding to a medium-seismicity Italian zone, is shown. Three design-governing parameters are assumed to build the input matrix, while eight capacity-design target requirements are assigned for the output dataset. A non-linear three-dimensional concentrated plasticity model of the structure is implemented, and time-history dynamic analyses are carried out with spectrum-consistent ground motions. The results show the promising ability of the proposed approach for the optimal design of earthquake-resistant structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.