Abstract
In this paper, a multi-objective optimization model is proposed to obtain the optimized configuration of interconnected distributed energy resource (DER) systems in a local energy community (LEC), while considering economic and environmental aspects. The objective is the optimal selection and sizing of DER with corresponding operation strategies, and the optimal configuration of the heating pipeline network, which allows the heat exchange among the DER systems. The economic objective is to minimize the total annual cost, whereas the environmental objective is to minimize the total annual CO 2 emissions. The Pareto frontier is found through the weighted-sum method, by using branch-and-cut. Numerical results show that the design method allows identifying different configurations of the interconnected DER systems and heating pipeline network on the Pareto frontier, thereby providing trade-off options to planners for economic/environmental sustainability of the LEC. Moreover, the total annual cost and emissions of the LEC with the optimized configurations are significantly reduced as compared with the conventional energy supply scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.