Abstract

Re-circulating cooling water systems are generally used to remove waste heat from hot process streams in conditions above the ambient temperature in many types of industries such as chemical and petrochemical, electric power generating stations, refrigeration and air conditioning plants, pulp and paper mills, and steel mills. Typical re-circulating cooling water systems are constituted by a mechanical draft wet-cooling tower that provides the cooling water that is used in a set of heat exchangers operated in parallel as can be seen in Figure 1. The economic optimization of re-circulating cooling water systems includes the simultaneous selection of the optimal design variables of the cooling tower and each heat exchanger in the cooling network, as well as the optimal structure of the cooling water network. The question is then how to reach this goal. Earlier work on cooling water systems has concentrated on the optimization of stand-alone components, with special attention given on the individual heat exchangers of the cooling water network. Other publications have dealt with the problem of designing minimum-cost cooling towers for a given heat load that must be dissipated (see Soylemez 2001, 2004; Serna-Gonzalez et al., 2010). Most of the methodologies previously reported have concentrated their attention in the optimal synthesis of cooling water networks (see Kim and Smith, 2001; Feng et al., 2005; Ponce-Ortega et al., 2007). All previous formulations simplified the network configurations because they consider the installation of only one cooling tower; however, the industrial practice shows that sometimes it is preferable to use a set of cooling towers connected in series, parallel, and series-parallel arrangements to improve the performance of the cooling towers reducing the operational cost and, hence, to decrease the overall total annual cost for the cooling water system. In addition, previous methodologies do not have considered several arrangements for the cooling water that can improve the performance in the coolers and reduce their capital costs. Another limitation for the previously reported methodologies is that they are based on the use of simplified formulations for the design of cooling towers. This chapter presents an optimization model for the simultaneous synthesis and detailed design of re-circulating cooling water systems based on the superstructure of Figure 2. The model considers all the potential configuration of practical interest and the results show the significant savings that can be obtained when it is applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call