Abstract
We introduce a rigorously based numerical method for compliance minimization problems in the presence of pointwise stress constraints. The method is based on new multiscale quantities that measure the amplification of the local stress due to the microstructure. The design method is illustrated for two different kinds of problems. The first identifies suitably graded distributions of fibers inside shaft cross sections that impart sufficient overall stiffness while at the same time adequately control the amplitude of the local stress at each point. The second set of problems are carried out in the context of plane strain. In this study, we recover a novel class of designs made from locally layered media for minimum compliance subject to pointwise stress constraints. The stress-constrained designs place the more compliant material in the neighborhood of stress concentrators associated with abrupt changes in boundary loading and reentrant corners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.