Abstract

PurposeThe objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.Design/methodology/approachA novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.FindingsThe optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.Originality/valueThe proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call