Abstract
Four methods based on a multimode interference (MMI) structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI-) based arrayed-waveguide grating (AWG) applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss) of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately −21.9 dB and had an insertion loss of −4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.