Abstract
Extractive distillation (ED) can be used to separate mixtures with low relative volatilities that are even close to unity. It is widely adopted for the separation of aromatics and nonaromatics in the petrochemical industry. Selecting a suitable solvent is of paramount importance to ED processes. Ionic liquids (ILs) are increasingly being considered as potential options to replace organic solvents in ED processes due to their favorable properties including high boiling points and extremely low volatilities. In this work, a nonexperimental solvent screening approach, i.e., computer-aided ionic liquid design (CAILD), is employed to identify the optimal ILs. Using a novel design objective and several structural and property constraints on IL, we have identified 1,3-dimethylpyridinium tetrafluoroborate ([C1mPy][BF4]) as the best IL solvent by solving a formulated CAILD-based mixed-integer nonlinear programming problem. The separation performance of this IL is further evaluated with rigorous process simulation in Aspen Plus. Besides, process simulation of the aromatic ED process using sulfolane as the benchmark organic solvent is performed. Furthermore, a systematic analysis of the energy consumption and the process economy is conducted by investigating the optimized simulation results of the studied aromatic ED process. The [C1mPy][BF4]-based process with an assumed IL price of 50 $/kg can reduce the capital cost by 35.2%, the operating cost by 11.8%, and the total annual cost by 31.2%. The IL price at the break-even point of replacing sulfolane with [C1mPy][BF4] in the aromatic ED process is 91.03 $/kg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.