Abstract

Coupling the dehydrogenation of ethylbenzene to styrene with the hydrogenation of nitrobenzene to aniline in a catalytic fixed bed membrane reactor has the potential for significantly improving both processes (Abo-Ghander et al., 2008. Modeling of a novel membrane reactor to integrate dehydrogenation of ethylbenzene to styrene with hydrogenation of nitrobenzene to aniline. Chemical Engineering Science, 63 (7), 1817–1826). In a continuing effort to realize this potential, an optimal design is sought for a co-current coupled flow, catalytic membrane reactor configuration. To achieve this objective, two conflicting objective functions, namely: the yield of styrene on the dehydrogenation side and the conversion of nitrobenzene on the hydrogenation side, are considered. The total number of the decision variables considered in the optimization problem is 12, representing a set of operating and dimensional parameters. The problem is solved numerically by two deterministic multi-objective optimization approaches: the normalized normal constraint method and the normal boundary intersection method. It was found that the integrated reactor system can be operated to produce a maximum styrene yield of 97% when production of styrene is emphasized and, on the other hand, up to 80% of nitrobenzene conversion when nitrobenzene conversion is concentrated on. The resulting sets of Pareto optimal solutions obtained by both techniques are shown to be identical. Qualitative explanations are provided for the effect of the decision variables on both objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.