Abstract

A method for the optimal affinity membrane column design, based in the solution of the Thomas kinetic model for frontal analysis in membrane column adsorption, is presented. The method permits to choose suitable membrane operating conditions, column dimensions and processing time, to maximize the throughput when an operating capacity restriction in the range of 80–95% of the column capacity is used. Two basic design charts were obtained by computer simulation, for residence and processing time calculation, respectively. These charts can be used and manipulated in a wide range of operational conditions, provided that four design specifications related to column axial and radial Peclet numbers, length and pressure drop, are fulfilled. The application of the method was illustrated using experimental data and a simple analytical procedure. The implications of the method and results on the design and optimization of affinity membrane chromatographic columns are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.