Abstract

The aim of this paper is to determine the shape of a fixed-bed reactor which maximizes the conversion rate under the constraints of process model equations (i.e. continuity, Navier–Stokes, and mass balance equations), energy dissipation, iso-volume, and manufacturing. Incompressible fluid, laminar flow regime and steady-state conditions in the reactor are the main assumptions taken into account. The optimization method developed is based on the adjoint system method and OpenFOAM framework is used as CFD solver to compute the state vector and its adjoint variables introduced by the optimization approach. The algorithm developed is then tested on two different cases, a reactor where a first order homogeneous reaction takes place and another one involving a surface reaction. The optimization results show a significant improvement of the conversion rate by 2.7% in the first case, and by 16% in the second one. Finally, initial and optimal shapes are manufactured using a 3D printing technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.