Abstract

The selection of the design parameters of passive vibration absorbers attached to a long cantilevered beam is studied. This study was motivated by the need for conducting parametric analysis of dynamics and control for Space-Shuttle-attached long beams. An optimization scheme using a quadratic cost function is introduced yielding the optimal sizing of the tip vibration absorber. Analytical solutions for an optimal absorber are presented for the case of one beam vibrational mode coupled with the absorber dynamics, and results are extended to cover the multiple mode case. An algorithm is developed to make an initial estimate of optimal tuning parameters which minimize the quadratic error cost function. Examples are given to illustrate the design concept.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.