Abstract

Abstract This paper presents a novel magnetic twisting device with a coaxial double rotor based on non-contact transmission characteristics of magnetic drive technology. When the twisting device rotates one cycle, the yarn can get triple twists. This means the new device can twist three times more than what the traditional single twist does. The structure of the magnetic twisting device is designed according to the twisting principle. The influence of main structural parameters on the magnetic torque is analyzed. To optimize the maximum transmission torque and the minimum magnet volume, the multi-objective optimization design model for the twisting device is established. Main parameters such as the relative angle of active disc assembly and passive disc assembly, the thickness of magnet, and the average radius of the magnet distribution are optimized by NSGA-II algorithm. Optimization results show that the proposed structural optimization design of a twisting device based on the magnetic drive has excellent performance and is effective for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.