Abstract

Crashworthiness and anti-vibration performance play critical roles in the performance of passenger cars. Aiming at enhancing the crash resistance and vibration resistance of vehicles thus providing good protection for passengers and drivers, a novel crash box with three-dimensional double arrow type negative Poisson’s ratio structure with functional gradient filling inner core (FGNPR crash box) is introduced in this paper and its performance is studied in detail through the comparison with the conventional crash box and the crash box filled with the uniform gradient negative Poisson’s ratio structure (NPR crash box) in crashworthiness and vibration resistance. Furthermore, range analysis is used to screen out the design variables that have little influence on the evaluation indexes and eliminate them. Based on these, neighborhood cultivation genetic algorithm (NCGA) and non-dominated sorting genetic algorithm-ii (NSGA-II) are selected as the optimization algorithms to carry out optimization design respectively and a comparison is made between the two suboptimal results screened out based on the normal boundary intersection (NBI) method to determine the overall optimal solution. Results show that the optimized FGNPR crash box has better crashworthiness and vibration resistance over the other crash boxes and its performance is further verified based on the peak acceleration of B-pillar in full vehicle crash condition. This paper provides some theoretical reference support for the development and exploration of automobile crash box systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call