Abstract

The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). In this paper, a nonlinear optimal controller is analytically designed for ABS by the prediction of the wheel slip response from a continuous nonlinear vehicle dynamics model. A new reference model for the wheel slip, which considers the effects of variations of tire normal load and tire/road condition, is proposed to be tracked by the controller. The main properties of the designed controller are evaluated and discussed by considering the important practical aspects of the slip control problem. The performed analysis along with the simulation results indicate that the designed controller with different special cases can successfully cope with the strong nonlinearity and realistic uncertainties existing in vehicle dynamics model. Meanwhile, a compromise between tracking accuracy and control energy can be easily made by the regulation of the weighting ratio, as a free parameter in the optimal control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.