Abstract

Inspired by a cactus spine and pitcher plant slippery surface, a strategy is proposed to design a superhydrophobic-hydrophilic conical copper needle (SHB-HL CCN) and hydrophilic slippery rough surface (SRS) integrative system. In this strategy, the SHB-HL CCN was inserted vertically on the hydrophilic SRS, and such a hydrophilic SRS + SHB-HL CCN system exhibited a high-efficiency cycle in droplet capture-coalescence (supply)-transport during the fog collection process. Even with a single SHB-HL CCN or hydrophilic SRS, the water collection rate is much higher than that of the usual materials (original copper needle, superhydrophobic substrate, hydrophobic SRS, etc.). It is demonstrated that a newly enhanced fog harvesting mechanism and higher fog collection rate can be realized due to the synergy between the Laplace pressure difference from the conical needle, wettability force of wettability difference in the conical copper needles, and released surface energy in droplet coalescence in addition to the attracting force from water bridges formed between needles and substrate. Compared with a single SHB-HL CCN and hydrophilic SRS, the water collection rate of the hydrophilic SRS + SHB-HL CCN system increased by approximately 328 and 152%, respectively. This fog collector provides direction to design water harvesting systems, which has important promotion significance for water collection application engineering in industry, aerospace, and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call