Abstract

Friction stir welding (FSW) has recently emerged as a solid-joining technology for high-strength aluminum alloys and light metal welding. The large axial force to be maintained between the welding tool and workpiece is the primary requirement of FSW process, which has also been a great obstacle to the design and application of FSW in manufacturing. Further complicating the issue is the need to perform FSW over three-dimensional contours, which requires a mechanism dexterous enough to set the stir pin used in welding to track a predefined trajectory with prescribed poses. Apart from the position specification, the design of a dexterous mechanism to pose the orientation of stir pin is a great challenge. This paper proposed the application of 3-PRS (P, R, and S standing for prismatic, revolute, and spherical joint, respectively) parallel mechanism as a welding tool head and employed it to form a five-axis welding machine tool for FSW. In order to accommodate the orientation capability requirements, the kinematic feature has been analyzed. With the dimensionless treatment of the Jacobian matrix of 3-PRS manipulator, a global condition index is proposed to estimate the kinematic dexterity in the whole orientation workspace. Finally, by means of an optimal design method and performance atlas, optimal designs of the 3-PRS parallel mechanism is carried out. A preferable set of optimized geometric parameters are obtained to achieve a compact and dexterous design, and the optimization results are used in development of a prototype machine for FSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call