Abstract
The refractive index (RI) sensitivity of a localized surface plasmon resonance (LSPR)-based fiber-optic probes is dependent on surface coverage of gold nanoparticles (GNP), fiber core diameter, and probe geometry. For U-bent LSPR fiber-optic probes, which demonstrated an order higher absorption sensitivity over straight probes, bend diameter and probe length may also have a significant influence on the sensitivity. This study on U-bent fiber-optic LSPR probes is aimed at optimizing these parameters to obtain highest possible RI sensitivity. RI sensitivity increases linearly as a function of surface coverage of GNP in the range of 2–22 %. U-bent fiber-optic probes made of 200-, 400-, and 600-μm fiber core diameter show optimum bend diameter value as ∼1.4 mm. In addition, RI sensitivity is almost the same irrespective of fiber core diameter demonstrating flexibility in choice of the fiber and ease in optical coupling. The length of the probe preceding and succeeding the bend region has significantly less influence on RI sensitivity allowing miniaturization of these probes. In addition to these experimental studies, we present a theoretical analysis to understand the relative contribution of evanescent wave absorbance of GNP and refractive losses in the fiber due to GNP, towards the RI sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.