Abstract

In this paper, we investigate the dynamical model of an active roll control system (ARCS) which can impose an anti-roll moment quickly by active actuators to prevent a vehicle rolling when the vehicle generates the roll tendency and effectively enhances the vehicle dynamic performance without sacrificing ride comfort. In the dynamic model of the ARCS, we consider the sprung mass of the vehicle which is (possibly) time-varying and the initial conditions are the uncertain parameters which are described by fuzzy set theory. A new optimal robust control which is deterministic and is not the usual if–then rules-based control is proposed. The desired controlled system performance is twofold: one deterministic, which includes uniform boundedness and uniform ultimate boundedness, and one fuzzy, which enhances the cost consideration. We then formulate an optimal design problem associated with the control as a constrained optimization problem. The resulting control design is systematic and is able to guarantee the deterministic performance and minimize the average fuzzy performance. Numerical simulations show that the control design renders the ARCS practically stable and achieves constraints following maneuvering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call