Abstract

High-throughput screening (HTS) is a large-scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large-scale settings. This article develops new methodologies for false discovery rate control and optimal design in HTS studies. We propose a two-stage procedure that determines the optimal numbers of replicates at different screening stages while simultaneously controlling the false discovery rate in the confirmatory stage subject to a constraint on the total budget. The merits of the proposed methods are illustrated using both simulated and real data. We show that, at the expense of a limited budget, the proposed screening procedure effectively controls the error rate and the design leads to improved detection power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call