Abstract

An analytical expression is derived for the optimal design of a series of CSTR's performing reversible Michaelis-Menten kinetics in the liquid phase. The optimal design is based on minimum overall volume ofN reactors in series required to achieve a certain degree of substrate conversion. The reversible Michaelis-Menten equation is also able to explain competitive product inhibition and irreversible Michaelis-Menten kinetics. The reversible Michaelis-Menten kinetics covers three types of enzymatic reactions depending on the values of the rate constant for the forward (ks) and reverse (kp) reactions. An optimum design is obtained in the three cases ofKs=Kp, Ks>Kp andKs<Kp. The minimum overall reactors volume is compared with the more convenient equal-sized CSTR's. The effect of enzyme deactivation on the minimum overall reactors volume is investigated. The performance of a series of CSTR's is compared with plug-flow reactor. Glucose isomerization which exhibits reversible Michaelis-Menten kinetics is used as a model system for optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.