Abstract

In this article, a clutching inerter damper is introduced into the conventional tuned mass damper to replace the typical damping element. Regarding the limitation of the typical damping element, the reformed clutching tuned mass damper system is more flexible in parameter design than the optimal tuned mass damper, which may be constrained by the manufacturing process to realize the too small or too large damping coefficient. To investigate the effectiveness of the clutching tuned mass damper, some fundamental analyses are first conducted on the clutching tuned mass damper, and results show that the clutching tuned mass damper system can achieve a similar control effect to the optimal tuned mass damper design. Considering the inherent nonlinearity of the clutching tuned mass damper, the equivalent linearization is performed based on the equivalent linearization parameters drawn from the single-degree-of-freedom system with clutching inerter damper. The equivalent linear system of the clutching tuned mass damper system has been proved to be quite accurate to approximate the nonlinear clutching tuned mass damper system. Based on the equivalent linear system, the performance evaluation and optimal design of the clutching tuned mass damper system are carried out by numerical analysis and analytical solution. Results have shown that there is an optimum inertance for the clutching tuned mass damper to achieve the optimal performance, and the optimum inertance is related to the structural damping ratio and the tuned mass ratio. Finally, the effectiveness of the clutching tuned mass damper system and its equivalent linear system in a multi-degree-of-freedom structure is verified by a numerical study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.