Abstract
To extend the lithium-ion (Li-ion) battery cycle life, an active combination of an ultracapacitor (UC) with an energy-dense Li-ion battery is shown as a promising approach for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). In this paper, the problem of the sizing of the Li-ion battery and UC, as well as the degree of hybridization between the UC power and battery power, is approached from a new perspective, i.e., by solving an optimization problem to minimize fuel consumption. To implement this optimized power sharing in real time, a novel energy management strategy is proposed, which includes battery power reference generation, UC state-of-charge regulation, and forecast control based on the driver commands. Finally, simulations and experiments in which the flywheel + generator + controlled load is used to emulate the vehicle drivetrain are provided to verify the reduced stress on the battery current and the improved fuel economy achieved by the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.