Abstract
The optimal design and operation methodology developed in part 1 will be illustrated in a batch polymerization reactor system (polymerization of methyl methacrylate (MMA) initiated by azobis(isobutyronitrile) (AIBN) in toluene). Following the steps of the methodology, first a mathematical model of the process (which accounts for gel effect and volume shrinkage) is developed and then the performance indices and mode of operation are selected. The optimal loading conditions and reactor temperature profile (which minimize the polydispersity of the final polymer product and minimize the monomer conversion constrained to a desired value of the weight-average molecular weight at the end of the batch time) are computed numerically. After designing the heating/cooling equipment, its flexibility, controllability,and safety, as well as the feasibility of the computed optimal operating conditions, are investigated. A nonlinear temperature controller is finally synthesized to enforce the reactor startup conditions and the optimal temperature profile
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.