Abstract
Korea Gas Corporation (KOGAS) is developing a new di-methyl-ether (DME) plant. Syngas is provided by natural gas tri-reforming, in a reactor consisting of a homogenous part where oxidation leads to a temperature increase required for the reforming reactions and a catalytic part where the reforming reactions take place. A first principle model for the tri-reforming reactor is developed. A kinetic mechanism is proposed combining homogeneous gas-phase reactions and heterogeneous catalytic reactions. The proposed model is systematically calibrated and validated with global sensitivity analysis followed by global parameter estimation against concentration measurements of a lab-scale prototype reactor and comparisons of the sensitivity of the outlet as a function of inlet composition and design parameters with experimental results. The validated model is finally used for the optimization of design variables such as length ratio of homogeneous and heterogeneous section and operational variables such as the feed composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.