Abstract

In this paper, a four-degree-of-freedom camellia-pollen-picking manipulator is proposed and designed. It can solve the problem of having no mechanized equipment for picking camellia pollen in agricultural machinery as the labor intensity of manual pollen extraction is high. To make the manipulator reach the target space quickly and efficiently, a structural-parameter-optimization method that reduces the working space to a more versatile cube is proposed. The numerical optimization algorithm is used to calculate the optimization result. Through the static analysis of the manipulator, the stability of the manipulator structure is verified. The working space of the manipulator is simulated and analyzed, and the simulation results are further verified by experiments. This research provides reliable technical support for the structural optimization, manufacturing, and intelligent upgrading of the camellia-pollen-picking robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call